The bioreduction of a series of benzoquinone ansamycins by NAD(P)H:quinone oxidoreductase 1 to more potent heat shock protein 90 inhibitors, the hydroquinone ansamycins.

نویسندگان

  • Wenchang Guo
  • Philip Reigan
  • David Siegel
  • Joseph Zirrolli
  • Daniel Gustafson
  • David Ross
چکیده

We have previously evaluated the role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the bioreductive metabolism of 17-(allylamino)-demethoxygeldanamycin (17AAG) to the corresponding hydroquinone, a more potent 90-kDa heat shock protein (Hsp90) inhibitor. Here, we report an extensive study with a series of benzoquinone ansamycins, which includes gel-danamycin, 17-(amino)-17-demethoxygeldanamycin, and 17-demethoxy-17-[[2-(dimethylamino)ethyl]amino]-geldanamycin. The reduction of these benzoquinone ansamycins by recombinant human NQO1 to the corresponding hydroquinone ansamycins was monitored by high-performance liquid chromatography (HPLC) and confirmed by liquid chromatography/mass spectrometry. Inhibition of purified yeast Hsp90 ATPase activity was augmented in the presence of NQO1 and abrogated by 5-methoxy-1,2-dimethyl-3-[(4-nitrophenoxy)methyl-]indole-4,7-dione (ES936), a mechanism-based inhibitor of NQO1, showing that the hydroquinone ansamycins were more potent Hsp90 inhibitors than their parent quinones. An isogenic pair of human breast cancer cell lines, MDA468 and MDA468/NQ16, differing in expression of NQO1, was used, and HPLC analysis showed that hydroquinone ansamycins were formed by the MDA468/NQ16 cells, which could be prevented by ES936 pretreatment. The MDA468/NQ16 cells were more sensitive to growth inhibition after treatment with the benzoquinone ansamycins compared with the MDA468 cells; this increased sensitivity could be reduced by ES936 pretreatment. The increased duration of benzoquinone ansamycin exposure showed increased potency and -fold inhibition in MDA468/NQ16 cells relative to the parental MDA468 cells. Computational-based molecular modeling studies displayed additional contacts between yeast Hsp90 and the hydroquinone ansamycins, which translated to greater interaction energies compared with the corresponding benzoquinone ansamycins. In conclusion, these studies show that the reduction of this series of benzoquinone ansamycins by NQO1 generates the corresponding hydroquinone ansamycins, which exhibit enhanced Hsp90 inhibition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mechanistic and structural analysis of the inhibition of the 90-kDa heat shock protein by the benzoquinone and hydroquinone ansamycins.

The benzoquinone ansamycins inhibit the ATPase activity of the 90-kDa heat shock protein (Hsp90), disrupting the function of numerous client proteins involved in oncogenesis. In this study, we examine the role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the metabolism of trans- and cis-amide isomers of the benzoquinone ansamycins and their mechanism of Hsp90 inhibition. Inhibition of purified...

متن کامل

Enzymatic reduction and glutathione conjugation of benzoquinone ansamycin heat shock protein 90 inhibitors: relevance for toxicity and mechanism of action.

Two-electron reduction of benzoquinone ansamycin (BA) heat shock protein (Hsp) 90 inhibitors by NAD(P)H:quinone oxidoreductase 1 (NQO1) to hydroquinone ansamycins (BAH2s) leads to greater Hsp90 inhibitory activity. BAs can also be metabolized by one-electron reductases and can interact with glutathione, reactions that have been associated with toxicity. Using a series of BAs, we investigated th...

متن کامل

The antiproliferative activity of the heat shock protein 90 inhibitor IPI-504 is not dependent on NAD(P)H:quinone oxidoreductase 1 activity in vivo.

IPI-504, a water-soluble ansamycin analogue currently being investigated in clinical trials, is a potent inhibitor of the protein chaperone heat shock protein 90 (Hsp90). Inhibition of Hsp90 by IPI-504 triggers the degradation of important oncogenic client proteins. In cells, the free base of IPI-504 hydroquinone exists in a dynamic redox equilibrium with its corresponding quinone (17-AAG); the...

متن کامل

19-substituted benzoquinone ansamycin heat shock protein-90 inhibitors: biological activity and decreased off-target toxicity.

UNLABELLED The benzoquinone ansamycins (BQAs) are a valuable class of antitumor agents that serve as inhibitors of heat shock protein (Hsp)-90. However, clinical use of BQAs has resulted in off-target toxicities, including concerns of hepatotoxicity. Mechanisms underlying the toxicity of quinones include their ability to redox cycle and/or arylate cellular nucleophiles. We have therefore design...

متن کامل

Formation of 17-allylamino-demethoxygeldanamycin (17-AAG) hydroquinone by NAD(P)H:quinone oxidoreductase 1: role of 17-AAG hydroquinone in heat shock protein 90 inhibition.

We have examined the role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the bioreductive metabolism of 17-allylamino-demethoxygeldanamycin (17-AAG). High-performance liquid chromatography (HPLC) analysis of the metabolism of 17-AAG by recombinant human NQO1 revealed the formation of a more polar metabolite 17-AAGH2. The formation of 17-AAGH2 was NQO1 dependent, and its formation could be inhibi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 70 4  شماره 

صفحات  -

تاریخ انتشار 2006